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Abstract

An effort is made to cover the full elastic-plastic range from the very

troublesome fractures which initiate and propagate at nominal or net stress

well down in the elastic range to the common yet more easily understandable

and preventable fractures at fully plastic or limit load conditions. Similari-

ties and differences of behavior between steels which are highly rate-sensitive

and aluminum alloys or other rather insensitive materials are examined. The very

marked distinctions between the very special extremes of plane stress and plane

strain are brought out along with their relevance to the failure of complex

structures and elements. In contrast, the need to consider bending in most

shell structures is emphasized. A demonstration is given of the likelihood in

the laboratory, but even more so in the field, of confusing limit load fractures

with low stress fractures.

Crack extension under plane strain conditions is studied in some detail,

and the important role of progressive blunting is indicated both in limiting

maximum achievable stresses and providing a small region of intense strain in

which ductile fracture mechanisms are operative. Comparison with appropriate

microstructural dimensions leads to a rationale for minimum thickness dimen-

sions for plane strain fracture. Plane stress yield patterns in cracked sheets

are shown to be greatly sensitive to the yield criterion. The line plastic zone

Dugdale model provides a correct solution for a non-hardening Tresca material,

but diffuse zones result for a Mises material. The important role of thickness

direction anisotropy is indicated. Stable extension under increasing load

appears as a possible consequence of crack advance into previously deformed

material. Conditions for stable vs. abrupt growth, the appropriateness of energy
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balance approaches, and plastic limit load calculations are also studied. An

attempt is made to place all in perspective.

Introduction

Both authors have prepared fairly extensive surveys relating to our present

subject [1-4] in the past few years. We therefore present here a brief review of

plasticity aspects of fracture which focuses on recent developments and view-

points along with suggestions for future study.

Fracturing with contained plasticity at a crack tip is considered first.

The relevance of the Irwin-Williams elastic singularity in controlling small

scale yielding is discussed, and a path independent line integral technique

leading to elastic-plastic analyses is outlined. Plane strain is examined in

some detail as a fairly complete picture has been developed for this case. The

hydrostatic stress elevation directly ahead of the tip increases rapidly with

strain hardening. Perhaps surprisingly, for a perfectly sharp crack the most

extensive straining appears above and below the tip rather than directly ahead

when the conventional assumption of small geometry changes is made. Attention

to the actual large geometry changes in progressive blunting of the sharp tip

reveals that an intense strain region is created directly ahead over a size

scale comparable to the tip opening displacement. A more quantitative study of

the ductile or brittle fracture mechanisms which are operative within this in-

tense strain region requires inclusion of progressive blunting. Strain harden-

ing serves to elevate near tip stresses but the loss of triaxiality due to

blunting effectively limits the maximum stress achievable over any reasonable

microstructural size scale. This suggests an abruptness of transitional behavior.
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Little progress has been made with the three-dimensional analysis of

cracked plate (sheet) materials, but the character of near tip fields in two-

dimensional plane stress has been clarified. The plane stress plasticity

patterns are strongly dependent on the yield surface employed; the line plas-

tic zone Dugdale model is an exact two-dimensional non-hardening solution for

a Tresca material, whereas diffuse plastic zones appear in a Mises material.

With physical interpretation of the two-dimensional discontinuity as deforma-

tion in a band confined to a sheet thickness width, an entirely different

dependence of local strain on thickness results. Anisotropy (thickness vs.

in-plane directions) is suspected as contributing to the yielding patterns

actually observed in metal sheets. The biaxial tension plane stress yield

surfaces for sheets isotropic in their plane depend critically on the proper-

ties in the thickness direction.

The true incremental nature of plastic stress-strain relations leads to

a view of crack extension quite different from that for a non-linear elastic

material with similar monotonic loading behavior. Dominant features of frac-

ture in ductile sheet materials are stable crack growth under increasing

deformation due to advance into previously strained material,with final frac-

ture as an instability in the growth process. The McClintock anti-plane shear

theory is reviewed and cast in a form showing its equivalence to an alternate

analysis of growth in terms of a "resistance curve".

Attention then is turned to energy balance concepts in more detail. The

unstable or falling portion of the local nominal stress-strain curve is seen

to provide the equivalent of a surface energy. However, because the nominal

values enter, the magnitude of this energy is strongly dependent on the geo-
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metry of the structure and its environment as well as on the detailed pro-

cess of fracture. Differences between rate-sensitive and insensitive mate-

rials show up in the preseance or absence of a large "barrier" to the initia-

tion of fracture as opposed to its propagation.

Finally, consideration is given to plastic limit load calculations and

the likelihood that even in simple plate and shell structures, out-of-plane

bending will control. Primarily but not entirely for this reason, many such

fractures in the laboratory and in the field which have been reported as low

stress brittle fractures turn out in fact to be limit load failures. Once

the plastic limit load is approached, local strains can become extremely large

and lead to failure of highly ductile materials through void coalescence

processes.

Elastic-Plastic Stress Analysis of Cracked Bodies: Preliminaries

Elastic stress analyses provide a convenient starting point for the

discussion of the elastic-plastic case. Irwin [5) and Williams [6] have shown

two dimensional plane stress and plane strain near crack tip elastic stress

fields to have a characteristic structure

a-- fij.() + other terms bounded at the crack tip. (1)

Here r is distance from the tip and the set of functions fij(e) of the

polar orientation angle are the same for all symmetrically loaded configura-

tions, fig. 1. These are normalized so that K/IV 2 is the dominant tension

directly ahead of the crack tip. An extensive tabulation of stress intensity
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factors K has been given by Paris and Sih [7]. The basic similarity inherent

in elastic stress fields is the theoretical basis for the organization of frac-

ture behavior through "elastic fracture mechanics" [8-10].

Purely elastic fracture mechanics studies of crack tip stresses are useful

but limited. For example, the in-plane stresses for plane stress and strain

are the same for elastic behavior but are very different in the plastic range.

Also, the incremental nature of plastic stress-strain relations leads to a view

of fracture instability not anticipated from elastic considerations. Further,

rather extensive contained yielding or fully plastic conditions often prevail

at fracture. This is the case with the tougher ductile metals in use and with

those which one would hope to develop in the high strength range. Also, the

necessary compactness of laboratory specimens sometimes may force a correlation

of real or apparent low stress level service behavior with high stress level

specimen behavior. It is worth repeating an earlier warning [34,3] that many of

the fractures of complex metal structures which look brittle and often are re-

ported as brittle are fractures at fully plastic or limit load conditions.

A precise statement of our notion that the elastic singularity governs

small scale contained yielding is embodied in Rice's boundary layer formulation

[2,4,11]. Here a crack in a structural member is replaced by a semi-infinite

crack in an infinite plane sheet. Actual (and generally complicated) boundary

conditions for the plastic zone or enclave are replaced by the requirement of

an asymptotic approach to the surrounding singularity:

K4- f .(e) as r -) . (2)1) t
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An elastic-plastic problem then is solved. Inherent mathematical simplifications

permit small scale yielding solutions in cases where a complete analysis is un-

manageable. While mathematically exact only to within a first term Taylor dev-

elopment of complete solutions in applied load, small scale yielding solutions

are good approximations up to substantial fractions (typically, one-half) of

general yielding loads [2,41.

Progress in the understanding of behavior in tension has followed on

increasingly reliable numerical-computer treatments, based recently on finite

element methods [12,131, and on the application of an energy line integral

[14-16] to the analytical study of near tip fields employing a deformation or

total theory of plasticity. Specialized to the case of a crack the latter tech-

nique identifies the integral [14]

n e J [W(O)dy - T • ds] (3)
Jr

as independent of the path on circuits r surrounding the crack tip, fig. 1.

Here T is the traction vector acting on the outer side of r , u is dis-

placement, and s is arc length. In the deformation plasticity approach em-

ployed, an energy density W(E) = a aijdEij is admitted by the stress-strain

relations. Keys to usefulness lie both in the ability to distort the integration

path and in the ease of assigning exact or approximate values to J . For

example, small scale yielding in plane strain leads to

j=(i - V2) 2
E 2 (4)

IE
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It is not coincidental that this equals Irwin's linear elastic energy release

rate. Indeed, it may be shown [4] that J is always the energy release rate

for an elastic material specified by the energy density W(e). Eq. (3), in

relating the near tip field to J , generalizes Irwin's relation between linear

stress intensities and the energy rate.

Rice and Rosengren [16] chose a small circular path for r and let the

radius shrink to zero to show that the integrand terms in eq. (3) must, in

angular average, exhibit a 1/r singularity. These terms are of order stress

times displacement gradient so that one anticipates an asymptotic structure

a function of 0
a..e.. -÷ as r 0 . (5)

This presumes no line of displacement discontinuity emanating from the tip,

although as we shall see, such lines can and do sometimes exist in a non-

hardening material.

Plane Strain Deformation Near Cracks

Conditions approaching the plane strain idealization result from constraint

of surrounding elastic material when the in-plane dimensions of plastically de-

forming regions are small compared to the thickness dimension of a cracked plate.

Such conditions generally represent the minimum toughness configuration for

structural metals [8,10].

Consider first contained plane strain deformation in a non-hardening

material. The principal in-plane shear stress in the highly strained regions



near the tip equals the yield value T , and a stress distribution depending

only on the polar angle 6 is approached as r -÷ 0 . Following ref. (14],

the stress distribution inithe fully plastic deforming region may be obtained

through slip line theory [17). The resulting Prandtl field and associated

stresses are indicated in fig. 2, where constant stress regions A and B

are joined by a centered fan C. Strains are bounded in the constant stress

regions, but the shear yr6 exhibits a singularity as the crack tip is approached

in the fan. The very near tip vertical displacement u varies with e in
y

the fan, so that an opening displacement results at the tip. As r + 0 in

the fan [14]

r To R(e) U Yo R(ý) sin d . (6)

Here y is the initial yield strain in shear and R(O) is a function undeter-

mined by the slip line analysis, but which may be viewed as an approximate

indication of the extent of the strained region which is deforming in an almost

purely plastic manner. Employing a deformation plasticity theory and the J

integral, an averaged value is set by [14]

3w/4

J = 2T° IJ/4 R(O)[cos 8 + (1 + 3w/2 - 20) sin e]de . (7)

For small scale yielding it would appear appropriate from recent etching

studies [18,19] to choose a highly strained region of the form

R(e) - R cos 2(0 - 7/2) (8)0
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extending into the fan region but approaching the tip along fan boundaries as

in fig. 3a. Thus from eqs. (4,7), the approximate extent of a small scale

yielding plastic zone is

3(i-v) K 2 (K 2

R 3-(1+) K-) = 0.29 2-) for v = 0.3 . (9)
0 r2 (2+7) 2T 02

Letting St = 2u y(3w/4) , the total opening displacement between upper and

lower crack surfaces at the tip is then approximated by

1-V KK2

S-T = 1.9 Y R (10)
0

We note in the next section the important role of the opening displacement for

fracture micromechanisms. No analysis is presently available for the large

scale yielding range and this is an important goal of future research. A specu-

lation on the large extension of the plastic region at a load still well below

the limit load is shown in fig. 3b. We consider an edge crack in an infinite

width body and presume the plastic region to be contained but large compared to

crack size. Further, consider the material as elastically incompressible so

that slip lines may be drawn in the plastic region. A state of nearly simple

tension at 2T0 is anticipated toward the outer extremity of the plastic zone

with slip lines near 450 . Of all the radial slip lines in the near tip fan,

only the initially vertical slip line will result in this stress state when

rotated to 450 . Thus we have drawn a plastic region with the initially ver-

tical slip line rotating and extending toward the extremity of the plastic

region, while other slip lines are extinguished on contact with the elastic-

plastic boundary. A similar construction for the 900 V notch would closely
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duplicate the plastic regions observed prior to joining for the double edge

notch configuration studied numerically by Marcal and King [13].

Important differences in the near crack tip stress and strain distribu-

tions in the large scale yielding range are illustrated by the limit flow fields

for a non-hardening material in figs. 3c and d . A deep double edge notch spe-

cimen retains the hydrostatic stress elevation to limit load, whereas the in-

ternally notched and single edge notch specimens do not [34]. For consistency

of the latter cases with the large scale yielding pattern prior to limit load

in fig. 3b, the radius of curvature of the initially vertical slip line at the

tip must decrease toward zero as limit conditions are approached, so as to

match the discontinuities at ±450 with the crack line in fig. 3d. This means

that unloading will occur. The great differences in both stress and strain

fields near the tip in constrained vs. unconstrained configurations suggests

that a single critical crack opening displacement fracture criterion [20] will

not correlate observed behavior for all configurations. Such simple measures of

near tip deformations may prove extremely useful for limited groups of specimens

having similar near tip stress fields. But no one-parameter characterization

of the near tip field, paralleling the stress intensity factor in the small scale

yielding range, can apply for all possible patterns of large scale yielding.

Hutchinson [15] and Rice and Rosengren [16] have obtained the structure

of near tip plane strain singularities in materials exhibiting a power law re-

lation

T T 0 (Y/yo)N for y>y (11)
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between principal shear stress and strain beyond the initial yield point. It

is necessary to assume elastic as well as plastic incompressibility in plane

strain, and this causes some difficulty in the interpretation of solutions.

Eq. (5) is the starting point so that the near tip r dependence is known,

and a numerical solution of an ordinary differential equation provides the 6

dependence. The maximum resolved in-plane shear stress and strain take the

forms

N/(l+N) 11(1+N)

o [RO -] , y R yo - as r - 0.

(12)

R(e) is a known function of J and 8 for each value of the hardening ex-

ponent N . The curves r = constant x R(8) give the shape of constant

shear strain lines near the tip, and we may view R(8) as an approximate indi-

cation of the extent of the plastically deforming region along a ray from the

tip at angle 8 . Further the ratio of the mean normal in-plane stress,

p = (axx + a )/2 , to the principal shear, T , approaches a function of 8

only, as does the principal shear direction also. Thus the singular deforma-

tion field involves proportional loading, so that the same form of singularity

would result in a power law hardening material treated through an incremental

theory. Polar plots of T R(8)/J (dimensionless) and p/T are shown in

fig. 4 for N = 0.005, 0.1, and 0.3 . More detailed numerical results are

presented in refs. [15,16]. Results for the smallest value of N appear to

represent the limit of the solution as N -÷ 0+. The corresponding stress

field then agrees closely with the non-hardening distribution of fig. 2. Again,
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the largest strains occur above and below the tip, rather than directly ahead;

but stress triaxiality directly ahead of the crack rises quite rapidly with

the hardening exponent.

Two factors make interpretation of these results difficult. The first is

that only the dominant singularity is given, not the complete solution. The

second is that actual elastic compressibility is certain to be important in view

of the high triaxiality. The first point may be somewhat clarified by examining

the anti-plane strain case in which a complete solution for power law hardening

materials is known [11J. Anti-plane strain dominant singularities may be found

through an analogous procedure. It turns out that for the small scale yielding

boundary layer type solution, these dominant singularities represent the com-

plete solution within the plastic region. The same is not true for large scale

yielding. Thus it may be the case that the plane strain dominant singularities

outlined above are also complete small scale yielding solutions for an incom-

pressible material. It is certain that they cannot be complete solutions for

large scale yielding. Further, one finds in large scale yielding anti-plane

strain that it is meaningless to speak of dominant singularities with light

strain hardening. While mathematically such singularities dominate as r + 0 ,

strain magnitudes become too large for the assumptions of the theory before

all other terms of the complete solution are negligible in comparison. Indeed,

no unique near tip strain field exists in the non-hardening limit N = 0

It is clear from the variety of fields in fig. 3 that the same statements apply

in plane strain.

Actual elastic compressibility becomes less important the more the equi-

valent plastic strain exceeds initial yield strains. But compressibility



-13-

considerably affects the behavior in the neighborhood of first yield in plane

strain, particularly with high triaxiality. For example, one may show for a

Mises material that the principal in-plane shear strain at first yielding is

7y 7 i (I-2v)2 2 1/2
y = YO - 3 (P/T 0 ) ] (13)

where p is the mean in-plane normal stress. Choosing p = (l+t)T° as the

maximum mean stress in a non-hardening material, one finds yy t0.3 yo for

v = 0.3 . Returning to the curves of fig. 4, since the triaxiality is large

in the quadrant 0 < e < 900 , the first yield strain for v < 1/2 will be

considerably less than To in that region. Thus, presuming without any real

justification that the lobes represent small scale elastic-plastic boundaries

in incompressible materials, one expects a shifting forward of the boundary

lobes in actual compressible materials. This makes direct comparison with

experiment difficult, but the general shape predicted for the highly deformed

region does correspond closely to results of etching studies [18,19].

The limited state of analytical progress in the relatively simple case of

plane strain suggests that computer based numerical methods must be relied

upon to fill in the many missing details. Such methods as presently formulated

are notably poor near singularities and fracture mechanics is, in a sense, the

judicious interpretation of crack tip singular fields of continuum analyses.

Eq. (5) and the asymptotic treatments of near tip fields in this section are

of special pertinence to the computer accuracy problem. At an elementary level,

they provide an aid for interpreting solutions in regions of otherwise question-

able accuracy. More importantly, they provide a guide for developing numerical
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treatments with sufficient freedom in deformation modes so as to closely

duplicate actual deformation patterns.

The Very Near Tip Region in Plane Strain Fracture and Minimum Sheet Thickness

Requirements

The ductile fracture mechanism of void formation from inclusions and sub-

sequent growth [21,22J sets the mean inclusion spacing as a characteristic length

scale over which continuum solutions must be examined for a fracture criterion.

Pure cleavage or partial cleavage facet formation with subsequent ductile or

ductile plus cleavage joining sets a size scale of one or a few grains. Thus

the region of interest is very near the tip and in structural metals is very

small compared to the plastic zone at fracture.

Fig. 5a for a non-hardening material presents the same slip line field

as fig. 2, but now the picture has been magnified by a large factor of order

l/y . The crack tip no longer appears sharp on this scale, due to the pro-
0

gressive blunting by plastic deformation. We have noted that the sharp crack

solution leads to no intense strain concentration directly ahead. The picture

changes drastically near the blunted tip, with the fan C becoming non-centered

and focusing into a small region D (fig. 5a) of intense deformation. This

region extends over a distance of approximately 26t for a semi-circular tip

with associated exponential spiral slip lines. While a detailed analysis of

blunting has not yet been carried out, Rice [14] has noted that procedures

employed by Wang [23] can be adapted to the contained yielding case with the

sharp crack solution setting boundary conditions on the blunting analysis.

Material points would be subjected to a stress well above tensile yield (due to
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the hydrostatic elevation) prior to envelopment by the large strain region, and

this could lead to cracking of inclusions so as to provide the void sites for

subsequent growth. Stress triaxiality is known [22] to exponentially amplify

void growth over average strain.

The influence of strain hardening on tensile stresses directly ahead of

the crack is shown in fig. 5b based on a power law analysis. These curves

showing a yy(x,O)/2t° were plotted from numerical results obtained by Rice and

Rosengren [16], and represent the prediction of the dominant singular term only.

Since it is seen in fig. 4 that the highly strained region extends primarily

above and below the tip and not ahead, the considerable elevation above 2T0

occurs by hydrostatic stressing and not by strain hardening in the conventional

sense. For convenience of illustration, distance from the crack tip is measured

in terms of a parameter R° = J/5Yo T . While predicted extents of the plasti-

cally strained region vary with hardening exponent, this value of R is in0

the range of predicted extents for the hardening exponents employed in fig. 5b.

Stresses are shown out to a distance of a tenth of R at which only minor0

deviations occur from the stress in a non-hardening material. This would appear

to be an appropriate utilization of the dominant singularity solution. We

presently have no prediction of the fall off of stress magnitudes from the

maximum values attained in this small region near the tip. One would expect a

tension in the neighborhood of 2T° at a distance ahead of the tip of order

unity times R . The stresses are not shown over a very near tip region com-

parable to the opening displacement 6t , since the reduction of triaxiality

forced by boundary conditions on the blunted tip is sure to greatly reduce pre-

dicted values (which neglect large geometry changes) in this region. The
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stresses in a non-hardening material will reduce as shown by the dashed line,

and at least a leveling off is anticipated in the hardening cases. Thus the

maximum stress achievable over any reasonable size scale is limited by blunting,

even with continuous hardening under increasing strain. This would suggest an

abruptness characteristic of toughness temperature transitions for maximum

stress dominated fracture mechanisms as in cleavage [241.

The curves of fig. 5b indicate the greater stresses with hardening for in-

clusion cracking and/or stable cleavage facet formation prior to the large ex-

pansion of cavities thus created when final fracture mechanisms are ductile.

This is counterbalanced by a retarding of cavity growth by strain hardening [22).

One would judge from results of Krafft [25] that the latter effect dominates.

Fracture studies on the microscale should be carried out with an awareness of

the stress and deformation environment characteristic of the near tip field in

plane strain. Observations based on simple uniaxial stress fields and accompany-

ing strain patterns may not be at all relevant. Also, attention would profitably

be directed toward developing laboratory specimens duplicating highly triaxial

stress fields over sizeable regions, so as to permit careful studies of plane

strain fracture mechanisms.

A stable process of fracture initiation through inclusion cracking or

other void initiation mechanism, followed by void growth and coalescence, may

occur on a large or a small scale. It necessarily involves very large local

strains in a plastic zone which includes a number of initiation sites. Under

plane strain conditions and small scale yielding, the coalescence is likely to

occur primarily between voids in the thickness direction and between the first

line of voids and the advancing crack. Therefore it seems reasonable to believe
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that, within a factor of 2 or so, the zone of very large plastic deformation

in a structural aluminum alloy should extend a minimum of 50 microns in from the

crack tip.

Equating 26 t of eq. (10) or 4y R to 50 microns shows R , the extent

of the plastically deforming region in the plane, to be 50/ 4 y microns or

approximately 100 000/00 millimeters, where a is the yield strength of

the alloy in psi. Therefore, a 50 000 psi aluminum alloy requires a minimum

plastic zone extent of 2 mm. to envelope a sufficient number of initiation

sites.

The sheet or plate thickness to ensure plane strain constraint conditions

at and near the midplane of the sheet need not be nearly as large in ratio as

for the fully plastic state [22,35,36]. Elastic constraint at the boundaries

of the plastic enclave will be more effective because portions of the boundary

are much closer than R to the tip of the crack. As a guess, a minimum thick-0

ness of 4R will be chosen. The resulting minimum sheet thickness for a0

50 000 psi aluminum alloy then is 8 mm. or 1/3 inch, which is quite substantial.

Of course, the in-plane geometry and loading also must meet all the requirements

of small scale yielding.

Initiation and propagation of fracture in carbon structural steels is very

different in detail from that in aluminum alloys. Strain-rate sensitivity pro-

duces an instability in the process. Cleavage of grains becomes more and more

dominant the faster the crack advances. Temperature sensitivity of the yield

strength and the entire flow curve also is most important. Nevertheless, the

process of initiation in undamaged hot-rolled structural steel is extremely
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ductile. Just as in aluminum alloys, it requires a separation process and a

ductile joining of the resulting cracks or voids.

Larger dimensions result from two of the important numerical differences

between the properties of hot-rolled carbon steel and structural aluminum. A

grain size order of dimensions, say 200 microns, seems more appropriate than the

50 for aluminum based on void site spacing. Also, the modulus of elasticity is

three times larger. Consequently, the minimum R required is 12 times lar-o

ger for material of the same yield strength, 1 200 000/a0 millimeters, approxi-

mately. A steel of 50 000 psi yield strength requires a 24 nmn or about one

inch extent of the plastic zone and a 4 inch minimum thickness of plate to

ensure plane strain initiation conditions on the basis of the assumptions made.

The minimum thickness required for a high strength steel, ao = 250 000 psi,

with its smaller distances between initiation sites is about the same as for a

strong structural aluminum alloy. When the fracture process is viewed in terms

of deformation rather than load, there is more similarity than difference in

detail between a structural aluminum and a high strength steel of small grain

size.

There is, however, a third important numerical difference between undama-

ged hot-rolled carbon structural steel and most structural aluminum alloys or

high strength steels. Under homogeneous conditions, the strain needed to open

cracks or voids at moderate temperatures and strain rates is far higher. In

general, the dimension of the zone of very large plastic deformation required

for fracture is not set solely by the distance between initiation sites. The

actual magnitude of the local strain is significant. Crack opening displace-
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ments for such very ductile steel must be appreciably greater than given by the

ratio of the 200 to 50 micron dimensions chosen in the preceding calcu-

lations. Conversely, of course, an embrittled steel will fracture at a still

earlier stage, before the full development of the large deformation zone.

This point about the magnitude of the local strain in the zone of large

deformation was not brought out in the previous discussion. It is hidden in

the expressions for strain variation within the large deformation region, and

these have not yet been suitably analyzed. A guess is that the large deforma-

tion region extent might have to exceed the 200 micron figure by a factor of

4 to account for the strain of order unity needed for fracture of highly duc-

tile mild steel, as compared to much lower strain requirements in structural

aluminums.

Multiplication of the previous value of one inch for R by 4 to give0

the higher strain levels needed and by 50 000/30 000 to convert to a

30 000 psi yield strength results in R = 7 inches (approx.) and a minimum0

thickness close to 30 inches for plane strain. On the other hand, the same

steel embrittled by precompression to have a ductile extension range of only

0.02 strain and a yield strength of nearly 100 000 psi [37,38] needs an R0

of less than 1/16 inch and a minimum sheet thickness below 1/4 inch for

plane strain brittle fracture.

The marked influence of local ductility appears even stronger in a very

crude analysis [3] based solely on the linear elastic stress distribution and

the choice of the same microstructural dimension (100 microns) for all metals.

The key assumption made is that the single number of greatest importance is cm
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the maximum value of the tensile strain averaged over this governing micro-

structural length. An additional and very rough assumption is that e is

given closely enough by the average tensile stress of the linear elastic solu-

tion divided by Young's modulus. In the accompanying Table I , plastic zone

extents R = 0.002 (m are tabulated on this basis for several materials:

a very mild steel a /E = 0.001, a high strength steel or strong aluminum alloy0

C /E = 0.007+ , and the intermediate example of a steel with 100 000 psi yield0

or an aluminum alloy of 35 000 psi yield strength.

f

The R designation is employed to emphasize that this plastic zone extento

is based upon the linear elastic solution reaching the yield stress a0 in

tension, while the previous R is the extent of the zone in which small buto

noticeable plastic deformation occurs based upon perfectly plastic analysis.

TABLE I

R (inches) for

a /E = 0.001 a /E = 0.0033 a /E = 0.007+

m

0.01 0.20 0.02 0.004

0.02 0.80 0.08 0.016

0.05 5.0 0.5 0.10

0.10 20. 2.0 0.40

0.20 80. 8.0 1.6

0.80 1300. 130. 26.
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There are enormous differences between the /a 0 variation of the per-

fectly plastic solution and the (1/a)2 of the linear elastic. The choiceo

of where the truth lies between these two extremes is left to the reader.

Either of the two sets of figures are quite spectacular, even with due allowance

for errors of choice, and indicate the small likelihood of true plane strain

fracture initiation in ductile sheet materials. However this is not so signi-

ficant in practice as might be assumed. The fracture of inclusions or the

cleavage of grains and the subsequent joining up will be delayed (require more

local strain or work-hardening) in the absence of an out-of-plane tensile stress

and the accompanying raised in-the-plane tension for yield. Local fractures

still will be initiated as the material strains and hardens. In fact, there

would appear to be some compensation because local strains at the crack tip

should be higher in the absence of the lateral constraint of plane strain. In

the case of steel, especially when the mechanism of fracture is the joining up

of cleavage cracks through ductile separation of the connected region remaining

transverse stress should have little influence. The low ductility figures of

Table I combined with this lack of effect explain why steel embrittled by pre-

strain, nitriding, extremely low temperature, or high strain-rate does show

plane strain crack initiation and propagation with small scale yielding.

The large size requirements for plane strain fracture inherent to highly

ductile low yield strength metals are a well known obstacle to laboratory

KIC testing [10]. Perhaps our discussion in terms of a plasticity analysis

and significant microstructural dimensions adds a rationale. Indeed, size

requirements are so stringent that a critical plane strain stress intensity

factor would appear not at all an appropriate toughness measure in many cir-
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cumstances, and a need for study of fracture under constraint conditions far

from this idealization is indicated for economical design.

Plane Stress and Varying Transverse Constraint

The problem of fracture in plate materials is essentially three-dimensional

when the in-plane dimensions of the plastic regions are comparable to the thick-

ness dimension. Little analytic progress has been made, and methods of analysis

will have to be computer based. Important features are the rise of triaxiality

through the thickness and deviations of strain patterns from the plane strain

and two-dimensional plane stress idealizations. The latter theory becomes

appropriate as dimensions of the plastic region approach sizes comparable to

and larger than the thickness. Still, great accuracy in prediction cannot be

expected within a thickness sized neighborhood of the crack tip.

Swedlow et al. [12] have presented computer solutions for two-dimensional

plane stress. While the usual problems occur in the immediate vicinity of the

tip, Hutchinson [15] has studied the structure of singularities in this case

through techniques identical to those noted above for plane strain. The r,O

dependence of equivalent stress and strain is identical to that of eq. (12).

There the similarities end. No triaxiality is permitted and the region of in-

tense strain spreads over a broad field in front of the crack as in fig. 6a,

rather than above and below. It turns out to be rather important that these

authors employed a Mises definition of first and subsequent yield surfaces, as

illustrated by the elliptical curve shown in a principal stress plane. A very

different non-hardening model was proposed by Dugdale [26]. He presumed yielding

to be confined to a narrow slit-like region in front of the crack (fig. 6b),
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with finite separations of surfaces in the plastic region opposed by the

yield stress a° . Hahn and Rosenfield [27] verified the model experi-

mentally, showing in etching studies on silicon iron that fully developed

plane stress yielding consisted of slip on broad intersecting bands at 450

through the thickness. Separation displacements in the Dugdale model corres-

pond approximately to average extensional strains in the narrow plastic zone

multiplied by specimen thickness. The two plane stress analyses lead to

drastically different predictions of the near tip field. For a given applied

stress, Dugdale model strains vary inversely with thickness while Mises model

strains have no dependence on thickness. Both patterns have been observed in

experimental studies, the diffuse Mises type by Gerberich [28] for aluminum

alloys.

We have made a careful study of the stress field in elastic regions of

the Dugdale model, with computational assistance by Mr. G. F. Rosengren.

Limiting attention to the small scale yielding field [2] for simplicity, it

was found that the stress state of the Dugdale model violates neither the

Tresca nor Mises criterion. If plastic flow rules are also satisfied the Dug-

dale model presents an exact solution. Note that a normal displacement dis-

continuity is permissible within the framework of a two-dimensional plane stress

perfect plasticity theory. The physical interpretation is in terms of through-

the-thickness slip. Normality of plastic strain increments to the yield sur-

face [29] requires that the stress state be at the uppermost point D on a

Mises ellipse (fig. 6a) to permit a normal discontinuity. Any stress state

along the heavy line upper segment of the Tresca hexagon (fig. 6b) will permit

the discontinuity. Now the stress state of the Dugdale model along the dis-

continuity turns out to be equal biaxial tension at a for small scale yielding,
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with progressive decrease of the stress parallel to the discontinuity from a0

with large scale yielding. This stress state always permits the discontinuity

in a Tresca material, but not in a Mises material. Thus the Dugdale model pre-

sents an exact two-dimensional plane stress solution for a Tresca material,

for small scale yielding as well as at the limit load.

We do not suggest that all apparent ambiguities in plane stress yielding

are explained by classifying materials as Tresca or Mises or any other iso-

tropic type. The important point is that plane stress plasticity patterns are

very sensitive to the yield surface. This sensitivity does not show in plane

strain, but might have been expected from the longitudinal shear case [2].

Anisotropy of properties when the thickness direction of rolled sheet materials

is compared with in-plane directions would be a major factor in altering the

shape of plane stress yield surfaces. Since the dependence of strains on

thickness is totally different for diffuse as opposed to line plastic zones,

a careful examination of the effect of the rolling process on yield patterns

might provide a key to producing tough sheet materials. Conclusions on frac-

ture instability as discussed in the next section will also vary with the

yield pattern.

Plastic zone size and opening displacement for a large sheet of Tresca

material containing a crack of length 2a subjected to a remote tension a.,

are [2] from the Dugdale model solution

R = a [sec (- )- I] = ÷. I 2

o 2a 8 2
o a

0
(14)

8aoa (ra K2
6t= -sE log [sec --)] +
t oE 2a a

0 0
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First terms of the Taylor expansions give the small scale yielding result.

Comparing these with the approximations of eqs. (9,10) suggests a plane strain

zone extent and opening displacement which are respectively 73% and 70%

of the plane stress values for v = 0.3 and for the same K . Rice has noted

[14] that hardening and necking are readily included in the Dugdale model

through the J integral. If a(6) represents the restraining stress as a

function of separation distance, as obtained by averaging stress-strain re-

lations over the approximately thickness size plastic zone, the opening dis-

placement is given by

6 t
J = (6)d . (15)

Stable Crack Extension and Fracture Instability

The true incremental nature of plastic stress-strain relations has a pro-

found effect on fracture instability. McClintock first pointed this out in elas-

tic-plastic studies of longitudinal shear (mode III, or anti-plane strain)

crack extension [30,31], where the first increment of growth is found to be

stable with continued growth requiring increasing load, until an instability is

reached at which subsequent load drops would be required to maintain quasi-

static crack extension. The physical basis for this perhaps surprising be-

havior is made clear through the following example. Consider two materials

having identical stress-strain curves for monotonic simple tension. One is

non-linear elastic; the other is elastic-plastic, recovering far less strain

upon unloading. Suppose both are made into identical cracked specimens loaded
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by clamping portions of the boundary and imposing displacements. The deforma-

tion patterns around the crack tip will be similar in both. Now suppose the

crack is cut ahead by a saw under fixed boundary displacements. The non-

linear elastic material will readjust its strain pattern to that resulting had

the displacements been imposed on a body with the now longer crack, so that a

severe strain concentration remains at the tip. Cutting ahead in the elastic-

plastic material produces little additional straining at the new crack tip.

In the limit of a plastic-rigid material there will be no additional strain.

This is easy to see by noting that we could loosen boundary clamps and no strain

recovery would result. Then cut the crack ahead in the unloaded specimen. The

specimen fits perfectly well into the tightened clamps again. The general fea-

ture leading to the rising deformation requirement for continued growth in a

plastic material is the very stiff elastic response upon unloading (infinitely

stiff for plastic-rigid) as contrasted with the soft tangent modulus response

for both unloading and loading of a non-linear elastic material.

We follow Rice's [4] treatment in generalizing the McClintock longitu-

dinal shear theory. First consider the monotonic anti-plane loading of a

stationary crack in an isotropic non-hardening material. The shear strain at

distance x directly ahead of the tip is

R
o (16)

yz o x

where R is the monotonically increasing extent of the plastic zone directly
0

ahead of the tip. Now consider the opposite extreme for which the crack is

quasi-statically cut through the material with loads adjusted however appropriate
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to maintain a constant extent R of the plastic zone directly ahead of the0

tip. The resulting steady state strain at distance x from the moving tip is

R R 2
y 0 {i + log • + [log 1 (17)

To see the great differences in these strain distributions, we follow

McClintock and Irwin [31] in choosing as an approximate fracture criterion

that a critical plastic strain yp need be attained at a certain micro-

structural distance p ahead of the crack. The resulting plastic zone sizes

required to initiate fracture from a stationary crack and to maintain quasi-

static steady state extension are respectively

"(Ro initiation fp (1 o y•1yo)

(18)

(R ) p exp (/1 + 2yP/yo -1)
"o steady state f o

The ratio of steady state to initiation zone sizes at fracture rises rapidly

with ductility, being 3 when yp = loy , 170 when Yf = 50yo , and when
f 0o

Yf 100y

One may show through a more detailed analysis [4] that the plastic zone

dimension required to quasi-statically increase the crack length by distance

Z is a universal monotonically increasing function R (f) of t (for a
0

given fracture ductility and microstructural dimension). The initiation extent

0 0
above is Rf(0 ) and the steady state extent is the asymptotic limit Rf(=).

This type of function is shown by the heavy curve in fig. 7,

,-1.A v~TT
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where we measure I from an initial crack length a . Now for any specific0

cracked configuration with loads proportional to a parameter Q , we can ob-

tain the plastic zone extent from the monotonic load analysis as some function

R (Q,a) increasing with both Q and crack length a . While it was an untested

approximation in previous studies that this same function would give a good

estimate of the zone size after some growth, recent and as yet unpublished

computer results by A. Chitaley of M.I.T. verify the appropriateness of this

approximation. Hence, the variation of load with crack length for quasi-static

extension is determined implicitly by solving RQ(Q, a0 + Z) = R(f ( .)
0 0 0

Differentiating with respect to Z , one finds the load drop instability to

occur at a load Q and growth £ simultaneously satisfying this equation and

aRo(Q, a0 + 0)/3L = dRf ()/do . The geometric solution is shown in fig. 7.
0 0 0

Light lines represent the family of curves R (Q, a) as functions of crack
0

length for fixed values of the load. The member of this family in tangential

contact with the heavy line simultaneously satisfies both equations, and thus

marks the point of instability.

One reason for our presentation differing somewhat from McClintock's

original papers is now evident. Fig. 7 shows that the elastic-plastic theory

of shear instability is in fact identical to the alternate "resistance curve"

analysis of instability by Krafft, Boyle, and Sullivan [32]. These authors

employed Irwin's energy release rate where we have employed the plastic zone

extent, and postulated a universal relation between the release rate and growth

length. There is no distinction in the small scale yielding range for which the

release rate is an appropriate measure of local conditions, for then it is pro-

portional to the zone extent.
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Stable growth under increasing tensile loads is most prominent in fully

developed plane stress as shown, for example, by Broek's [33] recent studies

on aluminum alloys. Here it is interesting to note that even when the elastic

singularity appropriately sets boundary conditions on a small yielded zone,

final fracture criteria obtained through the instability construction of fig. 7

may differ significantly from a critical stress intensity factor criterion.

Fractures involving contained plasticity in situations close to idealized

plane strain appear to be abrupt without prior growth. Somewhat less con-

strained fractures in plate materials do show stable growth [10), but this

differs significantly from the picture envisioned above as gradual developments

of shear lips accompany growth.

No analysis of instability is presently available for the plane stress

case. This would be a profitable research direction. Full incremental plasti-

city treatments are required as deformation formulations will not distinguish

between crack advance and load elevation. Monotonic load plasticity patterns

for the Mises material (fig. 6a) are somewhat similar to the anti-plane case.

Large plastic strains are focused into the tip from a diffuse yielded region

directly ahead, with the crack advancing into material which is already perma-

nently deformed, so that equally significant growth effects might be expected.

The line plastic zone of the two-dimensional plane stress solution for a Tresca

material will not lead to stable growth, but the actual three dimensional pat-

tern modelled is diffuse on the scale of a thickness dimension. Analyses

similar to the steady state computation leading to eq. (17) would appear appro-

priate for describing the mechanical environment in stress corrosion crack

advance.



-30-

Energy Balance Calculations

The great virtue of the Griffith approach to fracture, including the

Irwin and Orowan modification for plastic deformation, lies in the possibility

of obtaining a useful result without considering the detailed history of the

fracture process. It can bepredictive, therefore, only when comparing two

situations in which the material which fails, is in the same initial state and

is subjected to essentially the same history. This limitation of scope is a

consequence of the strong dependence of the local stresses and strains, of void

growth and coalescence, and of cleavage and other means of separation on the

entire path of loading and other environmental conditions as well as on the

geometry of the specimen or structure.

When a linear elastic solution for a crack is used as a basis of a Griffith

calculation, the apparent surface energy must include all energy dissipated in

plastic deformation and is enormously greater than the true surface energy for

ductile metals. An energy balance of this type is properly predictive of frac-

ture only if the work of plastic deformation per unit extension of the crack

remains constant or decreases as the crack progresses. This balance is useful

in analysis and design, although such a constant cannot be a material property,

whenever it can be found from the test of suitable specimens in the laboratory.

If an elastic-plastic solution is chosen as the basis for calculation, the

plastic deformation throughout the main volume of material is taken into account.

Therefore it cancels out in the energy balance which applies up until the point

of instability or decrease of nominal stress associated with necking through

the thickness in plane stress, or in the ligaments between coalescing voids, or

the combination of cleavage and the rapid joining up of cracks. In the real
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problem, consequently, it is the energy dissipation associated with the unstable

stage which should appear as surface energy. Were there no unstable plastic

stage in the joining up of voids and cracks, the elastic or atomic force insta-

bility would remain and give the true surface energy term when the kinetic energy

released is ignored. Except, perhaps, in the presence of a strongly corrosive

atmosphere at the crack tip, the plastic term still overwhelms the true surface

energy.

The distinction between the energy of unstable separation and the bulk

dissipation is extremely important because the two can be quite different. In

the small scale yielding problem, when cracks are long and nominal stresses and

strains are low, a metal with high yield strength and excellent elongation in

2 inches in the standard tension test may be markedly inferior to a weaker metal

with much smaller elongation in 2 inches but which opens up many voids at low

stress and locally pulls out like taffy.

Irreversibility of plastic deformation has an unfortunate and rather

peculiar effect on the prediction of stability or instability of crack growth

through an energy balance calculation. Its significance is made clearer when

a general point of view is adopted which includes linear elastic, nonlinear

elastic, elastic-perfectly plastic, and elastic - work-hardening materials as

special cases. Figure 8 compares a loaded body in an initial state (a) and a

final state (b) . One or more cracks have extended in going from (a) to (b)

The result (Rice and Drucker [39]) is that the total release of mechanical

(potential) energy, over and above the change in stored energy of the body and

any plastic dissipation is
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J mn (a b )dE.j dV
V mn Ji

The path of integration is from (b) to (a), and the integrand would be

positive for all stable elastic and elastic-plastic materials (Drucker [29])

which followed that path. Unfortunately, the material is taken from (a) to (b),

not the other way around. The only immediate, direct, and general statement

that follows is the inverse one that crack healing absorbs potential energy.

Of course this can be turned around for linear or nonlinear elastic materials

because they are reversible. Crack extension does release energy in elastic

bodies. If the energy release rate exceeds the amount needed for the creation

of new surface, growth occurs at fixed loads. If the energy released is in-

sufficient, the crack will not grow.

However, for elastic-plastic materials, crack extension may increase or

decrease the potential energy of the system. Stable growth of small trans-

verse cracks in a tension sheet under increasing load is permissible, there-

fore, although not necessary in an elastic-plastic body. It is never permis-

sible in a linear or nonlinear elastic material.

The barrier to the static initiation of fracture also is hidden in the

backward proof. A crack can propagate in mild steel at far lower nominal

stress than the limit value needed for initiation of fracture. The release

of energy given by the integral at working stress levels is very large if (a)

represents a stationary crack and (b) is a running crack just infinitesimally

longer. However, the ductility under static loading at working stresses is so
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high in undamaged steel that cleavage cannot be produced in a sufficient num-

ber of grains to permit the path from (a) to (b). Advantage cannot be taken

of the apparent availability of energy. Cracks will not propagate unless the

initiation barrier is overcome by such means as exceeding the limit load, or

producing high local stress through dynamic loading, or embrittling the mate-

rial at the root of the crack.

Similarly, if a comparison is made between plane stress and plane strain

crack propagation in small scale yielding of thin sheets, the energy "preference"

for transition to plane strain is enormous. Such a transition may occur but

energy balance alone does not provide the answer.

The removal of material from a loaded body, either mechanically or by

chemical attack has the same effect on energy release as the extension of a

crack just discussed. Interaction between chemical attack and the state of

stress is one aspect of the stress corrosion problem. However, it seems likely

that intergranular attack will lead to fracture more easily than bulk removal

of material. Stress corrosion can be especially effective in lowering frac-

ture strengths because it works directly on the local ductility and the energy

needed to produce new surface. For example, if with time the tensile strength

across grain boundaries is reduced to near zero, the fracture strength also goes

to near zero no matter how much prior plastic deformation of the grains may have

occurred. Similarly, any chemical embrittlement of the bulk material by gaseous

diffusion either before voids have begun to grow and coalesce, or during the

process of void growth when diffusion rates should increase, will decrease the

critical local strain or equivalently the effective surface energy. Hydrogen

embrittlement of steel might be a case in point but another explanation has been
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offered based upon the pressure produced by the hydrogen which causes cracking

in the absence of externally applied stress [40]. Some rethinking of these and

similar problems may be in order now that the relevant surface energy term has

a somewhat clearer meaning. Westwood [41] has similarly emphasized the rele-

vance of an appropriately defined surface energy term in environment sensitive

behavior, even though its magnitude is generally negligible compared to overall

plastic dissipation.

Limit Load Fractures

The real problem of (quasi-) brittle fracture in metal structures lies in

the domain of contained plastic deformation discussed in the preceding sections.

Such fractures still come as a surprise to the designer who knows his material

to be amply ductile in the usual sense, able to take appreciable strain without

rupture. He does in fact find it so, after the catastrophe, when he performs a

standard tension test on a specimen cut from the failed structure. The same

designer would expect (or at least not be surprised by) trouble at strain con-

centration points in the range of uncontained or fully plastic deformation.

He recognizes that local strains then can be extremely large and exceed the

ductility of the material.

Computation of the loads at which the deformation no longer is contained

strongly by the elastic behavior of surrounding metal does not require elastic-

plastic calculations with the actual stress-strain behavior of the metal. This

complexity can be avoided because a very satisfactory answer is given by the

plastic limit load computed on the basis of an elastic-perfectly plastic ideali-

zation of the metal. Until the limit load is approached, strains everywhere
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are contained by elastic strains. Concentration factors may be high but the

maximum strains remain moderate over regions visible to the unaided eye. The

high strains on the microscopic level at the roots of sharp cracks have already

been discussed, but they too are limited by the elastic constraint.

Once the limit load is reached, plastic strains are unconstrained. Infinite

strain is possible with the perfectly plastic idealization. This must be inter-

preted as meaning that the maximum strains in a work-hardening material are of

the order of plastic strains multiplied by a strain concentration factor which

tends to be higher than the elastic factor. Clearly, if a material is at all

prone to brittle fracture, it has a high likelihood of fracturing once the cal-

culated limit load for the structure is reached or slightly exceeded.

Conceptually, the plastic limit theorems [42] which enable bracketing of

the plastic limit load closely enough for practical purposes, play the same role

in plasticity as the complementary energy and the potential energy theorems do

in elasticity. Instead of dealing with equilibrium, compatibility, and stress-

strain relations simultaneously, information is obtained from the use of an

equilibrium stress field by itself and from a displacement (velocity) and an

associated strain (velocity strain or strain rate) field by itself. The theorems

are remarkably simple and in accord with intuition. When, as is customarily

assumed for elastic solutions, changes in geometry are not taken into account

in the equations of equilibrium and in the stress-strain relation, collapse

(continuing plastic deformation) occurs under constant load and at constant

stress. During collapse, strains are purely plastic.

Theorem I (lower bound): The body will not collapse or will just be at

the point of collapse if an equilibrium distribution of stress can be found
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which balances the applied load and is everywhere below yield or at yield.

Theorem II (upper bound): The body will collapse if there is any com-

patible pattern of plastic deformation for which the rate at which the ex-

ternal forces do work equals or exceeds the rate of internal dissipation.

Theorem I expresses the ability of the material of the body to adjust

itself to carry the applied load if there is any way of doing so. It gives

lower bounds on, or safe values of, the plastic limit loading. The maximum

lower bound is the plastic limit load. Theorem II states the fact that the

body will not stand up if a permissible failure path exists. It gives upper

bounds on, or unsafe values of, the plastic limit loading. The minimum upper

bound is the plastic limit load.

A direct corollary of the lower bound Theorem I is that residual,

thermal, or initial stresses or displacements do not affect the limit load.

This corollary depends as do the limit theorems themselves, on an assumption

of unlimited ductility of the material. If the local ductility and geometry

combine to require limit load conditions for fracture in the absence of initial

stress, the presence of such stress can suppress or enhance the danger at any

load only very little. Small plastic deformations are sufficient to wipe out

the residual pattern.

Computation of limit loads for symmetric thin notched sheets in tension,

fig. 9 is trivial when the Tresca yield criterion, fig. 6b, is employed. The

limit force P in tension is given almost exactly by the yield stress a0

in simple tension multiplied by the net cross-sectional area (b-2a)t , where

b is the gross width, a is the depth of each side notch or half the width
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of the internal crack, and t is the thickness of the sheet. A small increase

in the limit value is shown dashed in fig. 9. This is to take into account the

three-dimensional situation at the side notch roots and the small increase pos-

sible with the use of a Mises or intermediate criterion in lieu of the Tresca.

Test data on aluminum sheets of ample (but of course limited) ductility,

and small to moderate width b , do confirm that failure follows such a curve.

Yet errors in interpretation can and on occasion do arise even in this simplest

of examples. If the nominal or gross stress at failure, a = P /bt, isgross o

plotted instead of the net stress, the data follow the falling line of fig. 9.

This is as predicted and well understood despite the temptation to associate

such a drop with a quasi-brittle fracture below limit load.

It is easy to see how in more complex structures assembled from beam, plate,

and shell elements the confusion between a nominal stress and a proper measure

of plastic limit load could arise. This might well lead to an erroneous con-

clusion that a quasi-brittle fracture had occurred when in fact, the plastic

limit load had been reached or exceeded. Design procedures or analysis calcula-

tions of a nominal stress often allow for appreciable local changes in geometry

from the actual fabricated configuration to a much smoother and more desirable

structural shape. Such cold-forming under load will be satisfactory in an

otherwise well-fabricated mild steel structure at a sufficiently high temperature.

It does, however, mean that limit loads are exceeded and that local strains are

extremely high. The same smoothing of geometric shape at lower temperature or

with a less ductile metal in the critical regions of the structure will produce

a brittle appearing fracture at the plastic limit load for the structure as

fabricated.
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The fractures which occurred in low pressure storage vessels under hydro-

static test at 401F are excellent if not happy examples [43]. Although de-

signed in accordance with the code for ASME standard torispherical heads the

limit load as calculated later by Shield and Drucker [44] was exceeded by the

test pressure. A practical, yet not entirely satisfactory, solution is to use

warm water in the hydrostatic test and so cold-deform the vessel into a smoother

shape of less curvature in the knuckle region.

In the earlier studies of the brittle fracture of ships [34] the opinion

was expressed that the breaking of ships in two, most often represented a true

very low stress fracture, a fracture far below limit load. The possibility,

especially in the Liberty ships with insufficient attention to design details

and to fabrication technique, that many of these fractures may have been much

closer to a shell structure plastic limit load than first thought is worth

investigation. If true, designs of mammoth ships can proceed with far greater

confidence in survival under the most adverse sea conditions.

Questions of interpretation of laboratory as well as of field data also

arise in simple spherical and cylindrical pressure vessels [3]. Suppose, as

presented in ref. 3 , that a flat circular test plate of diameter d and

thickness t is inserted in a spherical shell of diameter D , fig. 10 . The

test plate is subjected to membrane stretching and to transverse bending. No

matter how small a crack is introduced into the test plate, the limit pressure

is necessarily appreciably below the limit pressure for an uncracked fixed edge

plate of diameter d (Hopkins and Drucker [45])
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(d2 /4)Plimit < (1.88)6irM = (1.88)6(ao t 2/4)

(19)

Plimit < 1.3aot 2/d2

The limit pressure for a spherical shell of diameter D and thickness

t is given by (wD2 /4)p* a irDt or p 4r t/DPsphere 0o sphereo

Therefore

Plimit < (ll.3/4)(tD/d2) Psphere (20)

When the test plate thickness is small and its diameter is moderate, Plimit

is well below psphere . For example, if D = 9 ft, d = 2 ft, and

t = 3/4 in., the limit pressure for the test plate is considerably less

than 40% of the limit pressure for a sphere of the same thickness and dia-

meter D . The larger the crack in the test plate the smaller the limit

pressure will be (see fig. 12 of ref. 46).

If the test plate remains ductile as the limit pressure is exceeded, it

will bulge to assume an almost spherical form and so be able to carry the

pressure as an almost perfect sphere. Similarly, if the pressure vessel with

a torispherical head is deformed under interior pressure at a high enough

temperature to avoid fracture, it too will be very much stronger under sub-

sequent loading. The point remains, however, that when the limit loading is

exceeded, local deformations do become very large and brittle fracture is all

too likely.
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A similar possible confusion between reaching limit pressure and reach-

ing a pressure sufficient to cause a membrane tension equal to the yield

strength or perhaps 80% of the yield strength appears in the testing of

cylindrical pressure vessels with a longitudinal crack or slit. Again out-

of-surface bending will give low limit loads when the slit is long enough.

Both the designer and the laboratory experimenter should become more

aware of the distinction between limit load and net section stress concepts

as they move away from the simple tension of thin flat sheets for which the

distinction disappears. Plastic limit loads are always failure loads in the

structural sense because deformations become excessive unless geometry change

strengthening takes over strongly at an early stage. The factor of safety

to be used must be greater if brittle fracture is likely than when the result

is just a large change in shape and dimension.

dwa
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1) Crack in two-dimensional deformation field. J integral has same value

for all paths such as r
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2) Slip line construction of limiting stress state near a crack tip, for

contained plastic yielding of a non-hardening material under plane

strain conditions.



(a) SMALL SCALE YIELDING (b) SPECULATION ON LARGE SCALE
YIELDING, BUT PRIOR TO LIMIT
LOAD

(c) LIMIT FIELD FOR DEEP (d) LIMIT FIELD FOR INTERNAL
DOUBLE EDGE NOTCHES NOTCH

3) The progression of plastic yielding in plane strain, from small scale

contained yielding to fully plastic limit conditions.
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4) Plane straining of material hardening according to the power law

T = To0(Y/yo 0 Upper curves: shape of R(e) in near tip equivalent strain

11(l+N)expression y y 0 [R(e)/rI . Lower curves: ratio of mean normal

stress p to equivalent shear stress.
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(a) MISES (b) DUGDALE OR TRESCA

6) Dependence of plane stress yielding patterns on the yield criterion.

Dugdale model is an exact two-dimensional plane stress solution for a Tresca

material, but diffuse yield zones result for a Mises material. D marks

stress states permitting a neck extending ahead of the crack.
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7) Elastic-plastic stable crack extension and final instability, from

anti-plane shear theory.



(a) (b)

8) Loaded body before (a) and after (b) crack extension, for energy

balance considerations.
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9) Failure at or above limit load for a notched plate.



0 
d

-d

10) Flat circular test plate inserted into a spherical shell.


